

Computer Science Department

Progression Models 2024

Computer Science

Progression Model Y7 Computer Science

PLEASE NOTE Year 7 have 2 learning modules, split between 3 assessment periods

Cycle 1: Collaborating Online Responsibly

Cycle 2: Collaborating Online Responsibly

(first 3 lessons of cycle)

Introduction to Scratch (last 3 lessons of cycle)

Cycle 3: Introduction to Scratch & Independent

Project

Learning Intent for this cycle:

To be able to log in, create a strong password and to

use, save and manage files on a computer.

To know how to access and use cloud storage/office

365/Teams/ One Drive. To learn basic skills for

software.

To understand the risks of an online presence

including risks to the self and data

To know ways to keep users safe and become

responsible participants in the online community.

Learning Intent for this cycle:

Know the difference between hardware and software &

understand how hardware and software interact and

communicate

Learning Intent for this module:

This module has been designed to introduce students to

Scratch. Scratch uses a graphical programming language

to help students learn to write code and engage in

creative thinking.

It provides students with the opportunity to develop an

understanding of fundamental programming concepts

such as variables, sequencing, selection and iteration.

Learning Intent for this cycle:

This module has been designed to introduce students to

Scratch. Scratch uses a graphical programming language

to help students learn to write code and engage in

creative thinking.

It provides students with the opportunity to develop an

understanding of fundamental programming concepts

such as variables, sequencing, selection and iteration.

Learners will create their own subroutines, develop their

understanding of decomposition and use lists. Build upon

their problem-solving skills by working through a larger

project.

Key Content to be learned:

Computing 3.9 – Understand a range of ways to use

technology safely, respectfully, responsibly and

securely, including protecting their online identity and

privacy; recognise inappropriate content, contact

and conduct and know how to report concerns

Computing 3.5 – Understand the hardware and

software components that make up computer

systems, and how they communicate with one

another and with other systems.

Key Content to be learned:

Computing 3.1 – Design, use and evaluate

computational abstractions that model the state

and behaviour of real-world problems and physical

systems.
Computing 3.2 - Understand several key algorithms that

reflect computational thinking [for example, ones for

sorting and searching]; use logical reasoning to compare

the utility of alternative algorithms for the same problem

Computing

Key Content to be learned:

Computing 3.3 - Use two or more programming languages,

at least one of which is textual, to solve a variety of

computational problems; make appropriate use of data

structures [for example, lists, tables or arrays; design and

develop modular programs that use procedures or

functions.

3.7 – Undertake creative projects that involve

selecting, using, and combining multiple

applications, preferably across a range of devices,

to achieve challenging goals, including collecting

and analysing data and meeting the needs of

known users.

Formative assessment for this cycle:
 1 – Using files and folders -successful use of

application (word/power-point) and sending an email

attachment

 2 - Writing Like a Computer Scientist – The effects of

cyberbullying.

3. Summative assessment

Formative assessment for this cycle:
 1 – Flowcharts –classroom assessment

2 – Summative assessment

Formative assessment for this cycle:
1 - Using coding blocks in Scratch to correctly animate a

program

2 - End of Year Examination

Progression Model - Year 8 Computer Science

PLEASE NOTE Year 8 have 2 learning modules, split between 3 assessment periods

Cycle 1: Impact of Technology Cycle 2:Spreadsheets (first 3 lessons of cycle)

Introduction to Python (last 3 lessons of cycle)

Cycle 3: Introduction to Python

Learning Intent for this cycle:

This module has been designed to allow students to

investigate and evaluate new and emerging

technologies and their impact on our everyday life.

It covers technology basics, internet safety,

scamming, hacking and phishing. Types and uses of

storage, use of networks and cyber security. The fist

module will allow students to be responsible,

competent, confident and creative users of a

range of technology

Learning Intent for this cycle:

Know how to use basic functions and formulas in

Excel spreadsheets. Understand how and why

these functions can be used in real life. Be able to

select appropriate forms of data collection for

specific purposes. Be able to analyse and present

data using charts and graphs

Learning Intent for this cycle:

This module will introduce learners to text-based

programming with Python which will further

develop their understanding of arithmetic

operations, selection, and iteration

Learners will grow in confidence as they work their

way through the fundamentals of Python and work

sequentially through tasks aimed at building

programing skills

Key Content to be learned:

Computing 3.5 – Understand the hardware and

software components that make up computer

systems, and how they communicate with one

another and with other systems.

Computing 3.9 – Understand a range of ways to

use technology safely, respectfully, responsibly and

securely, including protecting their online identity

and privacy; recognise inappropriate content,

contact and conduct and know how to report

concerns

Key content to be learned:

3.7 – Undertake creative projects that involve

selecting, using, and combining multiple

applications, preferably across a range of devices,

to achieve challenging goals, including collecting

and analysing data and meeting the needs of

known users.

Computing 3.3 - Use two or more programming

languages, at least one of which is textual, to solve

a variety of computational problems; make

appropriate use of data structures [for example,

lists, tables or arrays]; design and develop modular

programs that use procedures or functions.

Key Content to be learned:

Computing 3.1 – Design, use and evaluate

computational abstractions that model the state

and behaviour of real-world problems and physical

systems.

Computing 3.2 - Understand several key algorithms

that reflect computational thinking [for example,

ones for sorting and searching]; use logical

reasoning to compare the utility of alternative

algorithms for the same problem

Computing 3.3 - Use two or more programming

languages, at least one of which is textual, to solve

a variety of computational problems; make

appropriate use of data structures [for example,

lists, tables or arrays]; design and develop modular

programs that use procedures or functions.

Formative assessment for this cycle:

 1 – To research and evaluate different types of

computer storage

 2 – Writing Like a Computer Scientist: Impact of

Evolving Technology

Formative assessment for this cycle:

 1 – Basic skills of using spreadsheets

 2 – Writing Like a Computer Scientist: The impact

of social media/engineering on society.

Formative assessment for this cycle:

 1 – What is Python & key terms, Create your own

program

 2 –END OF YEAR EXAMINATION.

Progression Model Y9 Computer Science

PLEASE NOTE Year 9 have 2 learning modules, split between 3 assessment periods

Cycle 1: Computational Thinking & Binary

Cycle 2: Combined Project

Cycle 3: Intermediate Python

Learning Intent for this cycle:

Learners will further develop skills to problem solve

using computational thinking techniques of

abstraction and decomposition to model the state

and behaviour of real-world problems and physical

systems. Learner will understand the use of simple

Boolean logic [for example, AND, OR and NOT] and

some of its uses in circuits and programming;

understand how numbers can be represented in

binary, and be able to carry out simple operations on

binary numbers [for example, binary addition, and

conversion between binary and decimal].

Learning Intent for this cycle:

Learners to build on skills from Year 7 improving their

knowledge on hardware and software components

that make up computer systems, and how they

communicate with one another and with other

systems. Learners will investigate techniques used by

cybercriminals to steal data, disrupt systems, and

infiltrate networks. Learners will undertake a creative

project that involves selecting, using, and combining

multiple applications that includes analysing data,

presenting information and evaluating the results for

a given scenario.

Learning Intent for this cycle:

Learners to build on skills from Year 8 improving their

knowledge on the text-based programming

language Python. Further develop their

understanding of arithmetic operations, selection,

and iteration using real life problems. Learners will

Investigate how data can be represented and

processed using lists and strings. Explore operations on

sequences of data, that range from accessing an

individual element to manipulating the entire

sequence of data in files. Learners will study different

types of validation and build sub routines in programs.

Key Content to be learned:

Computing 3.1 – Design, use and evaluate

computational abstractions that model the state

and behaviour of real-world problems and physical

systems.

Computing 3.2 - understand several key algorithms

that reflect computational thinking [for example,

ones for sorting and searching]; use logical reasoning

to compare the utility of alternative algorithms for the

same problem

Computing 3.4 & 3.6 – understand simple Boolean

logic [for example, AND, OR and NOT] and some of

its uses in circuits and programming; understand how

numbers can be represented in binary, and be able

to carry out simple operations on binary numbers [for

example, binary addition, and conversion between

binary and decimal].

Key Content to be learned:

Computing 3.5 – Understand the hardware and

software components that make up computer

systems, and how they communicate with one

another and with other systems.

Computing 3.7 – undertake creative projects that

involve selecting, using, and combining multiple

applications, preferably across a range of devices,

to achieve challenging goals, including collecting

and analysing data and meeting the needs of

known users.
Computing 3.9 – Understand a range of ways to use

technology safely, respectfully, responsibly and securely,

including protecting their online identity and privacy;

recognise inappropriate content, contact and conduct

and know how to report concerns

Key Content to be learned:

Computing 3.1 – design, use and evaluate

computational abstractions that model the state

and behaviour of real-world problems and physical

systems.

Computing 3.2 - understand several key algorithms

that reflect computational thinking [for example,

ones for sorting and searching]; use logical reasoning

to compare the utility of alternative algorithms for the

same problem

Computing 3.3 - use two or more programming

languages, at least one of which is textual, to solve a

variety of computational problems; make

appropriate use of data structures [for example, lists,

tables or arrays]; design and develop modular

programs that use procedures or functions.

Formative assessment for this cycle:

1:Writing Algorithms

2: Writing Like a Computer Scientist – The

Environmental Impact of Computers

Formative assessment for this cycle:

 1:Hardware & Software

 2: Writing Like a Computer Scientist – The Effect of

Social Engineering on Society.

Formative assessment for this cycle:

 1:Python If & While Statement Exercises

 2: END OF YEAR EXAMINATION.

Progression Model – Y10

Computer Science Y10

Cycle 1 (1.2 & 2.1)

Computer Science Y10

 Cycle 2 (2.2 & 2.5)

Computer Science Y10

 Cycle 3 (2.3 & 2.4)

Learning Intent for this cycle:

To build on students understanding from KS3 of

memory, ASCII, binary and denary with new learning

covering virtual memory, character sets, Unicode,

hexadecimal and compression.

For students to build on prior knowledge on

algorithmic thinking, develop skills in writing

pseudocode and writing high level language

programs. To understand how key sorting (bubble,

merge & insertion) and searching (linear & binary)

algorithms work prior to programming fundamentals

unit.

Learning Intent for this cycle:

To build on students programming skills from KS3. These

form the basis for new learning covering nested IF’s,

data structures, sub programs, reading and writing to

files. Links well with SQL learning to program in low

level languages. While developing and strengthening

their knowledge in learning to code, students will also

look at the need for IDE’s and independently tackle

challenges on coding skills through a series of

programming challenges.

Learning Intent for this cycle:

Students will use a series of coding activities, tutorials

and challenges to fully appreciate the need for

testing computer programs using normal, boundary

and erroneous values.

Students will be able to build on their understanding

of boolean operators and apply this to logic diagrams

and truth tables.

Key Content to be learned:

(1.2)The need for secondary storage including

common types of storage and virtual memory:

suitable storage devices and storage media for a

given application and the advantages and

disadvantages of these using characteristics:

capacity, speed, portability, durability, reliability and

cost.

The units of data storage: Bit, Nibble (4 bits), Byte (8

bits), Kilobyte (1,000 bytes or 1 KB), Megabyte (1,000

KB), Gigabyte (1,000 MB), Terabyte (1,000 GB),

Petabyte (1,000 TB). Investigate how data needs to

be converted into a binary format to be processed

by a computer. Look at data capacity and

calculation of data capacity requirements. How to

add two binary integers together (up to and

including 8 bits) and explain overflow errors which

may occur.

How to convert positive denary whole numbers into

2-digit hexadecimal numbers and vice versa

How to convert binary integers to their hexadecimal

equivalents and vice versa. To carry out binary shifts

Key content to be learned:

(2.2) To create and interpret the use of variables,

constants, operators, inputs, outputs and assignments

in computer programs. To use the three basic

programming constructs used to control the flow of a

program: sequence, selection and iteration (count-

and condition-controlled loops)

To use the common arithmetic operators in the

creation of computer programs. Including the use of

the common Boolean operators AND, OR and NOT.

To create computer programs using the data types:

 integer, real, Boolean, character and string and

casting

Be able to read and interpret the use of basic string

manipulation and the use of basic file handling

operations: open, read, write, close.

To interpret and use basic records to store data and

write basic SQL to search for data. To use arrays (or

equivalent) when solving problems, including both

Key content to be learned:

(2.3) To analyse defensive design considerations:

o anticipating misuse

o authentication

To produce programs using Input validation

To investigate Maintainability: Use of sub programs,

Naming conventions, Indentation, Commenting.

To study the purpose of testing and explain the

different types of testing: iterative, final/terminal

To identify syntax and logic errors in programs

To select and use suitable test data: Normal,

Boundary, Invalid/Erroneous

To refine algorithms.

(2.4) Boolean Logic, to use a simple logic diagrams

using the operators AND, OR and NOT, use truth

tables and combine Boolean operators using AND,

OR and NOT Gates.

Define the term ‘character-set’ and the relationship

between the number of bits per character in a

character set, and the number of characters which

can be represented, e.g.: ASCII, Unicode.

Investigate how an image is represented as a series

of pixels, represented in binary. Look at the

relationship between the number of bits per

character in a character set, and the number of

characters which can be represented, e.g.: ASCII,

Unicode. Investigate how an image is represented as

a series of pixels, represented in binary, metadata

and the effect of colour depth and resolution on the

the quality of the image and the size of an image

file. Investigate how sound can be sampled and

stored in digital form. The effect of sample rate,

duration and bit depth on: The playback quality and

the size of a sound file.

Investigate a need for compression, the different

types of compression: lossy and lossless.

(2.1) Computational thinking: Looking at the

Principals of computational thinking: abstraction,

decomposition

and algorithmic thinking.

To Identify the inputs, processes, and outputs for a

problem, looking at the complexity of computer

system examples. Creating structure diagrams

To create, interpret, correct, complete, and refine

algorithms using: pseudocode, flowcharts, reference

language / high-level programming languages.

To Identify common errors in Trace tables.

To create and interpret standard searching

algorithms: binary search and linear search. To

create and interpret standard sorting algorithms:

bubble sort, merge sort and insertion sort

one-dimensional (1D) and two-dimensional (2D)

arrays.

To be able to use sub programs (functions and

procedures) to produce structured code and

Random number generation

(2.5) Characteristics and purpose of different levels of

programming language: High-level languages &

Low-level languages

To recognise the purpose of translators and identify

the characteristics of a compiler and an interpreter.

To be able to use common tools and facilities

available in an integrated development

environment (IDE):editors, error diagnostics, run-time

environment, translators.

Gain knowledge on applying logical operators in

truth tables to solve problems.

Formative assessment for this cycle:

 1:Secondary storage

 2:Binary conversion and addition

 3: Pseudocode and flowcharts

 4: Summative Assessment

Formative assessment for this cycle:

 1:Simple programming task

 2:Complex program task

 3:Boolean operators

 4:Summative Assessment

Formative assessment for this cycle:

 1:Boolean operators

 2:Logic diagrams

 3:Truth tables

 4:EOY Exam

Progression Model – Y11

Computer Science Y11

Cycle 1 (1.1 & 1.3)

Computer Science Y11

Cycle 2 (1.4 & 1.5)

Computer Science Y11

Cycle 3 (1.6)

Learning Intent for this cycle:

At KS3 students were taught some basic knowledge

on the internal working of a computer system

focusing on the CPU and its components alongside

external peripherals, RAM & ROM. For GCSE students

require a deeper knowledge on how a computer

works and what common characteristics affect

performance. Students have studied at KS3 the use

of technology in the home and school looking at

embedded systems. Students have a basic

understanding from KS3 of networks, new learning

covering the factors that affect the performance of

networks and the different roles of computers in

network topologies, along with encryption, IP & MAC

addressing and layers.

Learning Intent for this cycle:

Students have an understanding from KS3 of

hardware and software with new learning covering

file management, utility software, defragmentation,

file management and data compression. Students at

KS3 have an awareness of forms of attack on

computers and networks, new learning covering

brute force attacks, denial of service attacks, data

interception and theft, and also the concept of SQL

injection. Students have an understanding from KS3

of passwords, encryption and physical security.

Introduce students to more network security

methods, operating systems and utility software.

Learning Intent for this cycle:

Use students existing knowledge of data protection,

copyright law and computer misuse act to deliver

new learning more in depth knowledge needed for

GCSE covering data protection, computer misuse

and software licensing. Students have studied some

ethical and environmental impacts of digital

technology on society now need to understand the

wider implication of legal, cultural and privacy issues

that computers have had on society.

Key Content to be learned:

(1.1) The purpose of the CPU, the common CPU

components and their function including : ALU,

Arithmetic Logic Unit) , CU (Control Unit) , Cache,

Registers

Von Neumann architecture: MAR (Memory Address

Register), MDR (Memory Data Register), Program

Counter, Accumulator.

How common characteristics of CPUs affect their

performance: clock speed, cache size, number of

cores. The purpose and characteristics of embedded

systems including examples of embedded systems.

The need for primary storage

The difference between RAM and ROM

The purpose of ROM in a computer system

The purpose of RAM in a computer system

Key Content to be learned:

(1.4)Investigate forms of attack on computers:

Malware, Social engineering, e.g. phishing, people

as the ‘weak point’. Brute-force attacks, Denial of

service attacks, Data interception and theft, The

concept of SQL injection.

Investigate Common prevention methods:

Penetration testing, Anti-malware software, Firewalls

User access levels, Passwords, Encryption, Physical

security.

(1.5)The purpose and functionality of operating

systems including: user interface, memory

management and multitasking, peripheral

management and drivers, user management, file

management.

Key Content to be learned:

(1.6) Investigate the impacts of digital technology on

wider society including:

o Ethical issues

o Legal issues

o Cultural issues

o Environmental issues

o Privacy issues

Investigate the current legislation relevant to

Computer Science:

o The Data Protection Act 2018

o Computer Misuse Act 1990

o Copyright Designs and Patents Act 1988

o Software licences (i.e. open source and

proprietary)

Virtual memory

(1.3) The types of computer networks: LAN (Local

Area Network), WAN (Wide Area Network). The

factors that affect the performance of networks

and the different roles of computers in a client-server

and a peer-to-peer network. The hardware needed

to connect stand-alone computers into a Local Area

Network: wireless access points, routers, switches, NIC

(Network Interface Controller/Card), transmission

media.

Investigate the internet as a worldwide collection of

computer networks: DNS (Domain Name Server),

hosting, the cloud, web servers and clients. Learn

about star and mesh network topologies, their

modes of connection: Wired, Ethernet, Wireless, Wi-

Fi, Bluetooth.

Develop knowledge on Encryption, IP addressing

and MAC addressing, Network standards and

Common protocols.

The purpose and functionality of utility software

including: encryption software, defragmentation and

data compression.

Formative assessment for this cycle:

 1:Central processing unit and factors

 2:Computer networks

 3:The Internet & Network topologies

 4: Summative Assessment(Mocks)

Formative assessment for this cycle:

 1:Forms of attack on computers

 2: Common prevention methods

 3:Operating systems

 4:Summative Assessment (Mocks)

Formative assessment for this cycle:

 1: Ethical issues & Legal issues

 2: Cultural issues & Environmental issues

 3: Computer Laws

 4:Open V Closed software

Progression Model Y12

Computer Science

Year 12 Cycle 1

Computer Science

Year 12 Cycle 2

Computer Science

Year 12 Cycle 3)

Learning Intent for this cycle:

Build on students understanding of programming

from KS3/4, introduce students to Python and

Assembly Language. To learn basic programming

techniques in Python. How computers can be used

to solve problems and programs can be written to

solve them.

Investigate the functions of a processor. What are

the components of a CPU, and what do

they do? Explore the differences between and uses

of CISC and RISC processors. Learn how to use two's

complement to represent negative numbers in

binary. Extend student knowledge of binary number

to include subtraction.

Learning Intent for this cycle:

Understand how to represent positive and negative

real numbers using normalised floating-point

representation. Explore memory management

(paging, segmentation and virtual memory). Study a

range of SDLC’s. Study a range of testing strategies,

including black and white box testing and alpha and

beta testing. Gain a understanding of database,

including normalisation. Build on students

understanding of programming in Python to an

advanced level, introduce students to HTML & LMC.

Learning Intent for this cycle:

Explore the individual (moral), social (ethical)

and cultural opportunities and risks of digital

technology. Introduce stacks and queues.

Investigate assembly language (including

following and writing programs with Little Man

Computer). Build on students understanding of

algorithms by coding a bubble sort, insertion

sort, binary search and linear search.

Look at software development in relation to the

software development life cycle and identify

different methods used in industry.

Key Content to be learned:

1.1.1 Structure and function of the processor

The Arithmetic and Logic Unit; ALU, Control Unit and

Registers (PC, ACC, MAR, MDR, CIR). Buses: data,

address and control: how this relates to assembly

language programs. (b) The Fetch-Decode-Execute

Cycle; including its effects on registers. (c) The factors

affecting the performance of the CPU: clock speed,

number of cores, cache.

1.1.2 Types of processor

(a) The differences between and uses of CISC and

RISC processors. (b) GPUs and their uses (including

those not related to graphics). (c) Multicore and

Parallel systems.

1.1.3 Input, output and storage

a) How different input, output and storage devices

can be applied to the solution of different problems.

Key content to be learned:

1.4.3 Boolean Algebra

Define problems using Boolean logic. b) Manipulate

Boolean expressions, including the use of Karnaugh

maps.

1.2.1 Systems Software (a) The need for, function and

purpose of operating systems. (b) Memory

Management (paging, segmentation and virtual

memory). (c) Interrupts, the role of interrupts and

Interrupt Service Routines (ISR), role within the Fetch-

Decode-Execute Cycle. (d) Scheduling. (e)

Distributed, embedded, multi-tasking, multi-user and

Real Time operating systems. (f) BIOS. (g) Device

drivers. (h) Virtual machines, any instance where

software is used to take on the function of a

machine, including executing intermediate code or

running an operating system.

2.2Programming Techniques

(a) Features that make a problem solvable by

computational methods. (b) Problem recognition. (c)

Key Content to be learned:

1.4.2 Data Structures

(a) Arrays (of up to 3 dimensions), records, lists, tuples.

(b) The following structures to store data: linked-list,

graph (directed and undirected), stack, queue, tree,

binary search tree, hash tables.

1.2.3 Software Development

a) Understand the waterfall lifecycle, agile

methodologies, extreme programming, the spiral

model and rapid application development. (b) The

relative merits and drawbacks of different

methodologies and when they might be used. (c)

Writing and following algorithms.

Project Analysis 2.1.1 Thinking abstractly (a) The

nature of abstraction. (b) The need for abstraction.

(c) The differences between an abstraction and

reality. (d) Devise an abstract model for a variety of

situations.

(b) The uses of magnetic, flash and optical storage

devices. (c) RAM and ROM. (d) Virtual storage

1.4.1 Data Types

(a) Primitive data types, integer, real/floating point,

character, string and Boolean. (b) Represent positive

integers in binary. (c) Use of sign and magnitude and

two’s complement to represent negative numbers in

binary. (d) Addition and subtraction of binary

integers. (e) Represent positive integers in

hexadecimal. (f) Convert positive integers between

binary hexadecimal and denary. (g) Representation

and normalisation of floating point numbers in binary.

(h) Floating point arithmetic, positive and negative

numbers, addition and subtraction.

2.2.1 Programming techniques

(a) Programming constructs: sequence, iteration,

branching. (b) Recursion, how it can be used and

compares to an iterative approach. (c) Global and

local variables.

Problem decomposition. (d) Use of divide and

conquer. (e) Use of abstraction. (f) Learners should

apply their knowledge of: • bac racking • data

mining • heuristics • performance modelling •

pipelining • visualisation to solve problems.

1.5.1 Computing related legislation

(a) The Data Protection Act 1998. (b) The Computer

Misuse Act 1990. (c) The Copyright Design and

Patents Act 1988. (d) The Regulation of Investigatory

Powers Act 2000.

1.2.2 Applications Generation

(a) The nature of applications, justifying suitable

applications for a specific purpose. (b) Utilities. (c)

Open source vs closed source. (d) Translators:

Interpreters, compilers and assemblers.

2.2.2 Computational methods

(a) Features that make a problem solvable by

computational methods. (b) Problem recognition. (c)

Problem decomposition. (d) Use of divide and

conquer. (e) Use of abstraction.

1.3.1 Compression, Encryption and Hashing

(a) Lossy vs Lossless compression. (b) Run length

encoding and dictionary coding for lossless

compression

1.3.2 Databases (a) Relational database, flat file,

primary key, foreign key, secondary key, entity

relationship modelling, normalisation and indexing.

See appendix 5f. (b) Methods of capturing, selecting,

managing and exchanging data. (c) Normalisation

to 3NF. (d) SQL – Interpret and modify. See appendix

5d. (e) Referential integrity. (f) Transaction

processing, ACID (Atomicity, Consistency, Isolation,

Durability), record locking and redundancy.

1.3.3 Networks (a) Characteristics of networks and

the importance of protocols and standards. (b) The

internet structure: • The TCP/IP Stack. • DNS •

Protocol layering. • LANs and WANs. • Packet and

circuit switching. (c) Network security and threats,

use of firewalls.

1.5.2 Moral and ethical Issues The individual moral,

social, ethical and cultural opportunities and risks of

2.1.2 Thinking ahead (a) Identify the inputs and

outputs for a given situation. (b) Determine the

preconditions for devising a solution to a problem. (c)

The nature, benefits and drawbacks of caching. (d)

The need for reusable program components.

2.1.3 Thinking procedurally (a) Identify the

components of a problem. (b) Identify the

components of a solution to a problem. (c)

Determine the order of the steps needed to solve a

problem. (d) Identify sub-procedures necessary to

solve a problem.

2.1.4 Thinking logically (a) Identify the points in a

solution where a decision has to be taken. (b)

Determine the logical conditions that affect the

outcome of a decision. (c) Determine how decisions

affect flow through a program.

2.3.1 Algorithms (a) Analysis and design of algorithms

for a given situation. (b) The suitability of different

algorithms for a given task and data set, in terms of

execution time and space. (c) Measures and

methods to determine the efficiency of different

algorithms, Big O notation (constant, linear,

polynomial, exponential and logarithmic

complexity). (d) Comparison of the complexity of

algorithms. (e) Algorithms for the main data

structures, (stacks, queues, trees, linked lists, depth-

first (post-order) and breadth-first traversal of trees).

digital technology: • Computers in the workforce. •

Automated decision making. • Artificial intelligence.

• Environmental effects. • Censorship and the

Internet. • Monitor behaviour. • Analyse personal

information. • Piracy and offensive communications.

• Layout, colour paradigms and character sets.

Formative assessment for this cycle:

 1: System Software

 2: Programme task

 3: Types of processors

 4: Input, Output and Storage Device (Ext W)

 5: Binary and data types

Formative assessment for this cycle:

 1: Boolean Algebra

 2:Programming task

 3: Data Types

 4:Databases(Ext W)

 5:Networks

Formative assessment for this cycle:

 1: Data structures

 2: Software development (Ext W)

 3: Algorithmic Thinking

 4:Programming task

 5:Producing algorithms

Progression Model Y13

Computer Science

Year 13 Cycle 1

Computer Science

Year 13 Cycle 2

Computer Science

Year 13 Cycle 3

Learning Intent for this cycle:

Students start their project which they will work on

throughout the year beginning with Analysis of the

project.

Students will recap AS syllabus of the course and

then further develop knowledge in particular areas

of the syllabus.

Student will explore new areas of the curriculum in

OOP and gain an understanding of classes, objects,

methods, attributes, inheritance, encapsulation and

polymorphism. Further develop a student’s

knowledge of compression techniques.

Study symmetric and asymmetric encryption. Explore

databases including normalisation and SQL to

modify and interpret data. Explore search engine

indexing PageRank algorithms.

Learning Intent for this cycle:

Students complete the design of their project

incorporating theory knowledge learnt in other parts

of the syllabus. Students will code and write up their

development story, with the use of testing to inform

their development of a solution at various sections of

their project.

New knowledge learnt will be further developing

their own understanding of using structures to

store data: linked list, graph (directed and

undirected), tree, binary search tree, hash tables.

Applying their knowledge of abstraction to bac

racking, data mining and heuristics. Use

methods to determine the efficiency of different

algorithms e.g. Big O notation. Investigate the logic

associated with D type flip flops, half and full adders.

Learning Intent for this cycle:

Students complete the evaluation of their project

incorporating theory knowledge learnt in other parts

of the syllabus.

Students to study concurrent processing. To

investigate the use of algorithms to describe

problems and standard algorithms Investigate

recursion and how it can be used and compares to

an iterative approach. Explore standard algorithms

(Bubble sort, insertion sort, merge sort, quick sort,

Dijkstra's shortest path

algorithm, A* algorithms, binary search and linear

search).

Key Content to be learned:

3.1.1 Project Analysis(a) Describe and justify the

features that make the problem solvable by

computational methods. (b) Explain why the

problem is amenable to a computational approach.

3.1.2 Stakeholders (a) Identify and describe those

who will have an interest in the solution explaining

how the solution is appropriate to their needs (this

may be named individuals, groups or persona that

describes the target end user). 3.1.3 Research the

problem (a) Research the problem and solutions to

similar problems to identify and justify suitable

approaches to a solution. (b) Describe the essential

features of a computational solution explaining these

choices. (c) Explain the limitations of the proposed

solution. 3.1.4 Specify the proposed solution (a)

Specify and justify the solution requirements including

hardware and software configuration (if

Key content to be learned:

3.3 Developing the solution (25 marks)

3.3.1 Iterative development process (a) Provide

annotated evidence of each stage of the iterative

development process justifying any decision made.

(b) Provide annotated evidence of prototype

solutions justifying any decision made.

3.3.2 Testing to inform development (a) Provide

annotated evidence for testing at each stage

justifying the reason for the test. (b) Provide

annotated evidence of any remedial actions taken

justifying the decision made.

1.4.2 Data Structures Recap (a) and (b) then (c) How

to create, traverse, add data to and remove data

from the data structures mentioned above. (NB this

can be either using arrays and procedural

programming or an object-oriented approach).

Key Content to be learned:

3.4 Evaluation (20 marks) 3.4.1 Testing to inform

evaluation (a) Provide annotated evidence of

testing the solution of robustness at the end of the

development process. (b) Provide annotated

evidence of usability testing (user feedback). 3.4.2

Success of the solution (a) Use the test evidence from

the development and post development process to

evaluate the solution against the success criteria

from the analysis. 3.4.3 Describe the final product (a)

Provide annotated evidence of the usability features

from the design, commenting on their effectiveness.

3.4.4 Maintenance and development (a) Discuss the

maintainability of the solution. (b) Discuss potential

further development of the solution.

2.3.1 Algorithms Recap (a) and (b) then look at the

suitability of different algorithms for a given task and

data set, in terms of execution time and space. (c)

appropriate). (b) Identify and justify measurable

success criteria for the proposed solution

1.1.1 Structure and function of the processor Recap

(a) to (c) then (d) The use of pipelining in a processor

to improve efficiency. (e) Von Neumann, Harvard

and contemporary processor architecture.

1.1.2 Types of processor

Recap (a) to (b) (c) Multicore and Parallel systems.

1.2.2 Applications Generation Recap a to d. (e)

Stages of compilation (lexical analysis, syntax

analysis, code generation and optimisation). (f)

Linkers and loaders and use of libraries

1.2.4 Types of Programming Language (a) Need for

and characteristics of a variety of programming

paradigms. (b) Procedural languages. (c) Assembly

language (including following and writing simple

programs with the Little Man Computer instruction

set). See appendix 5d. (d) Modes of addressing

memory (immediate, direct, indirect and indexed).

(e) Object-oriented languages (see appendix 5d for

pseudocode style) with an understanding of classes,

objects, methods, attributes, inheritance,

encapsulation and polymorphism

1.3.1 Compression, Encryption and Hashing (a) Lossy

vs Lossless compression. Recap. (b) Run length

encoding and dictionary coding for lossless

compression. (c) Symmetric and asymmetric

encryption. (d) Different uses of hashing.

3.2 Design of the solution (15 marks) 3.2.1

Decompose the problem (a) Break down the

problem into smaller parts suitable for computational

solutions justifying any decisions made. 3.2.2 Describe

the solution (a) Explain and justify the structure of the

solution. (b) Describe the parts of the solution using

algorithms justifying how these algorithms form a

complete solution to the problem. (c) Describe

usability features to be included in the solution. (d)

Identify key variables / data structures / classes

1.4.3 Boolean Algebra Recap (a) and (b) then (c)

Use the following rules to derive or simplify statements

in Boolean algebra: De Morgan’s Laws, distribution,

association, commutation, double negation. (d)

Using logic gate diagrams and truth tables. See

appendix 5d. (e) The logic associated with D type flip

flops, half and full adders.

1.5.1 Computing related legislation Recap (a) to (d)

1.5.2 Moral and ethical Issues The individual moral,

social, ethical and cultural opportunities and risks of

digital technology: • Computers in the workforce. •

Automated decision making. • Artificial intelligence.

• Environmental effects. • Censorship and the

Internet. • Monitor behaviour. • Analyse personal

information. • Piracy and offensive communications.

• Layout, colour paradigms and character sets.

2.1.1 Thinking abstractly Recap (a) The nature of

abstraction. (b) The need for abstraction. (c) The

differences between an abstraction and reality. (d)

Devise an abstract model for a variety of situations.

2.1.2 Thinking ahead (a) Identify the inputs and

outputs for a given situation. (b) Determine the

preconditions for devising a solution to a problem. (c)

The nature, benefits and drawbacks of caching. (d)

The need for reusable program components

2.1.3 Thinking procedurally Recap (a) Identify the

components of a problem. (b) Identify the

components of a solution to a problem. (c)

Determine the order of the steps needed to solve a

problem. (d) Identify sub-procedures necessary to

solve a problem.

2.1.4 Thinking logically Recap (a) Identify the points

in a solution where a decision has to be taken. (b)

Determine the logical conditions that affect the

outcome of a decision. (c) Determine how decisions

affect flow through a program.

Measures and methods to determine the efficiency

of different algorithms, Big O notation (constant,

linear, polynomial, exponential and logarithmic

complexity). (d) Comparison of the complexity of

algorithms. (e) Algorithms for the main data

structures, (stacks, queues, trees, linked lists, depth-

first (post-order) and breadth-first traversal of trees).

(f) Standard algorithms (bubble sort, insertion sort,

merge sort, quick sort, Dijkstra’s shortest path

algorithm, A* algorithm, binary search and linear

search).

Revision: Past exam papers. Quizzes and Videos.

justifying choices and any necessary validation. 3.2.3

Describe the approach to testing (a) Identify the test

data to be used during the iterative development

and post development phases and justify the choice

of this test data.

1.3.2 Databases Recap (a) and (b) then (c)

Normalisation to 3NF. (d) SQL – Interpret and modify.

See appendix 5d. (e) Referential integrity. (f)

Transaction processing, ACID (Atomicity,

Consistency, Isolation, Durability), record locking and

redundancy.

1.3.3 Networks Recap (a) and (b) then (c) Network

security and threats, use of firewalls, proxies and

encryption. (d) Network hardware. (e) Client-server

and peer to peer.

1.3.4 Web Technologies (a) and (b) then (c)

PageRank algorithm. (d) Server and client side

processing.

1.4.1 Data Types Recap (a) to (f) then (g)

Representation and normalisation of floating point

numbers in binary. (h) Floating point arithmetic,

positive and negative numbers, addition and

subtraction. (i) Bitwise manipulation and masks: shifts,

combining with AND, OR, and XOR. (j) How

character sets (ASCII and UNICODE) are used to

represent text.

2.1.5 Thinking concurrently (a) Determine the parts of

a problem that can be tackled at the same time. (b)

Outline the benefits and trade-offs that might result

from concurrent processing in a particular situation.

2.2.2 Computational methods Recap (a) to (d) then

(e) Use of abstraction. (f) Learners should apply their

knowledge of: • bac racking • data mining •

heuristics • performance modelling • pipelining •

visualisation to solve problem.

Formative assessment for this cycle:

1:CISC, RISC & Pipelining

2:Types of programming languages (Ext W)

3:Analysis of Project.(CW)

4:Databases

5:Networks

Formative assessment for this cycle:

1:Design of Project

2:Implementation story

3:DeMorgans Law

4:Computer Laws (Ext W)

5:Implentation of Project hand in

Formative assessment for this cycle:

1:Project Evaluation

2: Project code

3: Final project hand in

