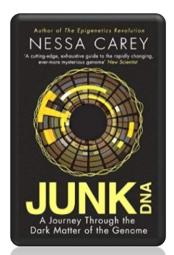
A-level Biology Transition Pack

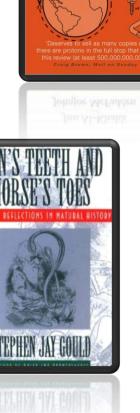
- This pack contains a programme of activities and resources to help prepare you to start A-level Biology. It is aimed to help consolidate your GCSE knowledge and give you a head start with A-level Biology. Please note we do not expect you to do all this work, just choose the bits that interest you the most and leave anything that you find too challenging at this point. We know some of you have more time than others to dedicate to studying at this time, just do what you can and look after yourselves.
- We do not expect you to buy any books or materials at this time, you will be provided with a textbook in September.
- We do not expect you to hand any of this work in, but we will be happy to look at anything you produce in September
- Take care and stay safe



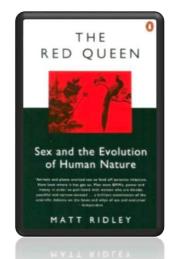
Book Recommendations

Kick back this summer with a good read. The books below are all popular science books and great for extending your understanding of Biology

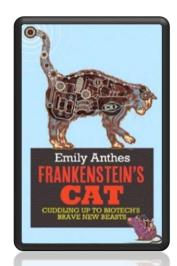
A Short History of


Nearly Everything

Junk DNA


Our DNA is so much more complex than you probably realize, this book will really deepen your understanding of all the work you will do on Genetics. Available at amazon.co.uk

Studying Geography as well? Hen's teeth and horses toes
Stephen Jay Gould is a great
Evolution writer and this
book discusses lots of
fascinating stories about
Geology and evolution.
Available at amazon.co.uk


The Red Queen

Its all about sex. Or sexual selection at least. This book will really help your understanding of evolution and particularly the fascinating role of sex in evolution. Available at amazon.co.uk

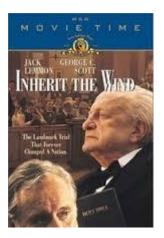
A Short History of Nearly Everything

A whistle-stop tour through many aspects of history from the Big Bang to now. This is a really accessible read that will re-familiarise you with common concepts and introduce you to some of the more colourful characters from the history of science! Available at amazon.co.uk

An easy read.. Frankenstein's cat

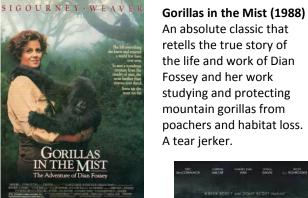
Discover how glow in the dark fish are made and more great Biotechnology breakthroughs. Available at amazon.co.uk

Movie Recommendations


Everyone loves a good story and everyone loves some great science. Here are some of the picks of the best films based on real life scientists and discoveries. You wont find Jurassic Park on this list, we've looked back over the last 50 years to give you our top 5 films you might not have seen before. Great watching for a rainy day.

Inherit The Wind (1960) Great if you can find it. Based on a real life trial of a teacher accused of the crime of teaching Darwinian evolution in school in America. Does the debate rumble on today?

SARANDON


LORENZ

Lorenzo's Oil (1992) Based on a true story. A young child suffers from an autoimmune disease. The parents research and challenge doctors to develop a new cure for his disease.

Andromeda Strain (1971) Science fiction by the great thriller writer Michael Cricthon (he of Jurassic Park fame). Humans begin dying when an alien microbe arrives on Earth.

poachers and habitat loss. A tear jerker. NDROMEDA

Something the Lord Made (2004)

Professor Snape (the late great Alan Rickman) in a very different role. The film tells the story of the scientists at the cutting edge of early heart surgery as well as issues surrounding racism at the time.

There are some great TV series and box sets available too, you might want to check out: Blue Planet, Planet Earth, The Ascent of Man, Catastrophe, Frozen Planet, Life Story, The Hunt and Monsoon.

Movie Recommendations

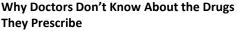
If you have 30 minutes to spare, here are some great presentations (and free!) from world leading scientists and researchers on a variety of topics. They provide some interesting answers and ask some thought-provoking questions. Use the link or scan the QR code to view:

A New Superweapon in the Fight Against Cancer

Available at:

http://www.ted.com/talks/paula hammon d a new superweapon in the fight agai nst cancer?language=en

Cancer is a very clever, adaptable disease. To defeat it, says medical researcher and educator Paula Hammond, we need a new and powerful mode of attack.



Why Bees are Disappearing

Available at:

http://www.ted.com/talks/marla_spivak_why_bees_are_disappearing?language=en
Honeybees have thrived for 50 million
years, each colony 40 to 50,000 individuals
coordinated in amazing harmony. So why,
seven years ago, did colonies start dying
en-masse?

Available at:

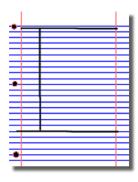
http://www.ted.com/talks/ben_goldacre_what_doctors_don_t_know_about_the_dr_ugs_they_prescribe?language=en

When a new drug gets tested, the results of the trials should be published for the rest of the medical world — except much of the time, negative or inconclusive findings go unreported, leaving doctors and researchers in the dark.

Growing New Organs

Available at:

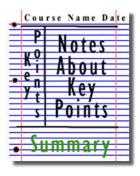
http://www.ted.com/talks/anthony_atala_growing_organs_engineering_tissue?language=en


Anthony Atalla's state-of-the-art lab grows human organs — from muscles to blood vessels to bladders, and more.

Research activities

Research, reading and note making are essential skills for A level Biology study. For the following task you are going to produce 'Cornell Notes' to summarise your reading.

1. Divide your page into three sections like this


2. Write the name, date and topic at the top of the page

3. Use the large box to make notes. Leave a space between separate idea. Abbreviate where possible.

4. Review and identify the key points in the left hand box

5. Write a summary of the main ideas in the bottom space

Images taken from http://coe.jmu.edu/learningtoolbox/cornellnotes.html

Research activities

The Big Picture is an excellent publication from the Wellcome Trust. Along with the magazine, the company produces posters, videos and other resources aimed at students studying for GCSEs and A level.

For each of the following topics, you are going to use the resources to produce one page of Cornell style notes.

Use the links of scan the QR code to take you to the resources.

BigPicture

Topic 1: The Cell

Available at: http://bigpictureeducation.com/cell

The cell is the building block of life. Each of us starts from a single cell, a zygote, and grows into a complex organism made of trillions of cells. In this issue, we explore what we know – and what we don't yet know – about the cells that are the basis of us all and how they reproduce, grow, move, communicate and die.

Topic 2: The Immune System Available at:

http://bigpictureeducation.com/immune

The immune system is what keeps us healthy in spite of the many organisms and substances that can do us harm. In this issue, explore how our bodies are designed to prevent potentially harmful objects from getting inside, and what happens when bacteria, viruses, fungi or other foreign organisms or substances breach these barriers.

Topic 3: Exercise, Energy and Movement Available at:

http://bigpictureeducation.com/exercise-energy-and-movement

All living things move. Whether it's a plant growing towards the sun, bacteria swimming away from a toxin or you walking home, anything alive must move to survive. For humans though, movement is more than just survival – we move for fun, to compete and to be healthy. In this issue we look at the biological systems that keep us moving and consider some of the psychological, social and ethical aspects of exercise and sport.

Topic 4: Populations

Available at:

http://bigpictureeducation.com/populations

What's the first thing that pops into your mind when you read the word population? Most likely it's the ever-increasing human population on earth. You're a member of that population, which is the term for all the members of a single species living together in the same location. The term population isn't just used to describe humans; it includes other animals, plants and microbes too. In this issue, we learn more about how populations grow, change and move, and why understanding them is so important.

Topic 4: Populations

Available at: http://bigpictureeducation.com/health-and-climate-change

The Earth's climate is changing. In fact, it has always been changing. What is different now is the speed of change and the main cause of change – human activities. This issue asks: What are the biggest threats to human health? Who will suffer as the climate changes? What can be done to minimise harm? And how do we cope with uncertainty?

Pre-Knowledge Topics

A level Biology will use your knowledge from GCSE and build on this to help you understand new and more demanding ideas. Complete the following tasks to make sure your knowledge is up to date and you are ready to start studying:

DNA and the Genetic Code

In living organisms nucleic acids (DNA and RNA have important roles and functions related to their properties. The sequence of bases in the DNA molecule determines the structure of proteins, including enzymes.

The double helix and its four bases store the information that is passed from generation to generation. The sequence of the base pairs adenine, thymine, cytosine and guanine tell ribosomes in the cytoplasm how to construct amino acids into polypeptides and produce every characteristic we see. DNA can mutate leading to diseases including cancer and sometimes anomalies in the genetic code are passed from parents to babies in disease such as cystic fibrosis, or can be developed in unborn foetuses such as Downs Syndrome.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.bbc.co.uk/education/guides/z36mmp3/revision

http://www.s-cool.co.uk/a-level/biology/dna-and-genetic-code

And take a look at these videos:

http://ed.ted.com/lessons/the-twisting-tale-of-dna-judith-hauck

http://ed.ted.com/lessons/where-do-genes-come-from-carl-zimmer

Task:

Produce a wall display to put up in your classroom in September. You might make a poster or do this using PowerPoint or similar Your display should use images, keywords and simple explanations to:

Define gene, chromosome, DNA and base pair

Describe the structure and function of DNA and RNA

Explain how DNA is copied in the body

Outline some of the problems that occur with DNA replication and what the consequences of this might be.

Evolution

Transfer of genetic information from one generation to the next can ensure continuity of species or lead to variation within a species and possible formation of new species. Reproductive isolation can lead to accumulation of different genetic information in populations potentially leading to formation of new species (speciation). Sequencing projects have read the genomes of organisms ranging from microbes and plants to humans. This allows the sequences of the proteins that derive from the genetic code to be predicted. Gene technologies allow study and alteration of gene function in order to better understand organism function and to design new industrial and medical processes.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.bbc.co.uk/education/guides/z237hyc/revision/4

http://www.s-cool.co.uk/a-level/biology/evolution

And take a look at these videos:

http://ed.ted.com/lessons/how-to-sequence-the-human-genome-mark-j-kiel

http://ed.ted.com/lessons/the-race-to-sequence-the-human-genome-tien-nguyen

Task:

Produce a one page revision guide for an AS Biology student that recaps the key words and concepts in this topic. Your revision guide should:

Describe speciation

Explain what a genome is

Give examples of how this information has already been used to develop new treatments and technologies.

Biodiversity

The variety of life, both past and present, is extensive, but the biochemical basis of life is similar for all living things. Biodiversity refers to the variety and complexity of life and may be considered at different levels. Biodiversity can be measured, for example within a habitat or at the genetic level. Classification is a means of organising the variety of life based on relationships between organisms and is built around the concept of species. Originally classification systems were based on observable features but more recent approaches draw on a wider range of evidence to clarify relationships between organisms. Adaptations of organisms to their environments can be behavioural, physiological and anatomical. Adaptation and selection are major factors in evolution and make a significant contribution to the diversity of living organisms.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/ecological-concepts

http://www.s-cool.co.uk/a-level/biology/classification

And take a look at these videos:

http://ed.ted.com/lessons/why-is-biodiversity-so-important-kim-preshoff http://ed.ted.com/lessons/can-wildlife-adapt-to-climate-change-erin-eastwood

Task:

Write a persuasive letter to an MP, organisation or pressure group promoting conservation to maintain biodiversity.

Your letter should:

Define what is meant by species and classification

Describe how species are classified

Explain one way scientists can collect data about a habitat, giving an example

Explain adaptation and how habitat change may pose a threat to niche species

Exchange and Transport

Organisms need to exchange substances selectively with their environment and this takes place at exchange surfaces. Factors such as size or metabolic rate affect the requirements of organisms and this gives rise to adaptations such as specialised exchange surfaces and mass transport systems. Substances are exchanged by passive or active transport across exchange surfaces. The structure of the plasma membrane enables control of the passage of substances into and out of cells

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/gas-exchange

http://www.s-cool.co.uk/a-level/biology/nutrition-and-digestion/revise-it/human-digestive-system

And take a look at these videos:

http://ed.ted.com/lessons/insights-into-cell-membranes-via-dish-detergent-ethan-perlstein http://ed.ted.com/lessons/what-do-the-lungs-do-emma-bryce

Task:

Create a poster or display to go in your classroom in September. Your poster should either: compare exchange surfaces in mammals and fish or compare exchange surfaces in the lungs and the intestines. You could use a Venn diagram to do this. Your poster should:

Describe diffusion, osmosis and active transport

Explain why oxygen and glucose need to be absorbed and waste products removed

Compare and contrast your chosen focus.

Cells

The cell is a unifying concept in biology, you will come across it many times during your two years of A level study. Prokaryotic and eukaryotic cells can be distinguished on the basis of their structure and ultrastructure. In complex multicellular organisms cells are organised into tissues, tissues into organs and organs into systems. During the cell cycle genetic information is copied and passed to daughter cells. Daughter cells formed during mitosis have identical copies of genes while cells formed during meiosis are not genetically identical

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/cells-and-organelles

http://www.bbc.co.uk/education/guides/zvjycdm/revision

And take a look at these videos:

https://www.youtube.com/watch?v=gcTuQpuJyD8

https://www.youtube.com/watch?v=L0k-enzoeOM

https://www.youtube.com/watch?v=qCLmR9-YY7o

Task:

Produce a one page revision guide to share with your class in September summarising one of the following topics: Cells and Cell Ultrastructure, Prokaryotes and Eukaryotes, or Mitosis and Meiosis.

Whichever topic you choose, your revision guide should include:

Key words and definitions

Clearly labelled diagrams

Short explanations of key ideas or processes.

Biological Molecules

Biological molecules are often polymers and are based on a small number of chemical elements. In living organisms carbohydrates, proteins, lipids, inorganic ions and water all have important roles and functions related to their properties. DNA determines the structure of proteins, including enzymes. Enzymes catalyse the reactions that determine structures and functions from cellular to whole-organism level. Enzymes are proteins with a mechanism of action and other properties determined by their tertiary structure. ATP provides the immediate source of energy for biological processes.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/biological-molecules-and-enzymes

http://www.bbc.co.uk/education/guides/zb739j6/revision

And take a look at these videos:

https://www.youtube.com/watch?v=H8WJ2KENIK0

http://ed.ted.com/lessons/activation-energy-kickstarting-chemical-reactions-vance-kite

Task:

Krabbe disease occurs when a person doesn't have a certain enzyme in their body. The disease effects the nervous system. Write a letter to a GP or a sufferer to explain what an enzyme is.

Your poster should:

Describe the structure of an enzyme

Explain what enzymes do inside the body

Ecosystems

Ecosystems range in size from the very large to the very small. Biomass transfers through ecosystems and the efficiency of transfer through different trophic levels can be measured. Microorganisms play a key role in recycling chemical elements. Ecosystems are dynamic systems, usually moving from colonisation to climax communities in a process known as succession. The dynamic equilibrium of populations is affected by a range of factors. Humans are part of the ecological balance and their activities affect it both directly and indirectly. Effective management of the conflict between human needs and conservation help to maintain sustainability of resources.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.bbc.co.uk/education/guides/z7vqtfr/revision

http://www.s-cool.co.uk/a-level/biology/ecological-concepts

And take a look at these videos:

https://www.youtube.com/watch?v=jZKIHe2LDP8

https://www.youtube.com/watch?v=E8dkWQVFAoA

Task:

Produce a newspaper or magazine article about one ecosystem (e.g. the arctic, the Sahara, the rainforest, or something closer to home like your local woodland, nature reserve or shore line).

Your article should include:

Key words and definitions

Pictures or diagrams of your chosen ecosystem.

A description of the changes that have occurred in this ecosystem

An explanation of the threats and future changes that may further alter this ecosystem.

Control Systems

Homeostasis is the maintenance of a constant internal environment. Negative feedback helps maintain an optimal internal state in the context of a dynamic equilibrium. Positive feedback also occurs. Stimuli, both internal and external, are detected leading to responses. The genome is regulated by a number of factors. Coordination may be chemical or electrical in nature

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.s-cool.co.uk/a-level/biology/homeostasis

http://www.bbc.co.uk/education/topics/z8kxpv4

And take a look at these videos:

https://www.youtube.com/watch?v=x4PPZCLnVkA

https://www.youtube.com/watch?v=x4PPZCLnVkA

Task:

Produce a poster to display in your classroom in September summarising one of the following topics: Temperature Control, Water and the Kidneys, Glucose, or The Liver.

Whichever topic you choose, your poster or display should include:

Key words and definitions

Clearly labelled diagrams

Short explanations of key ideas or processes.

Energy for Biological Processes

In cellular respiration, glycolysis takes place in the cytoplasm and the remaining steps in the mitochondria. ATP synthesis is associated with the electron transfer chain in the membranes of mitochondria and chloroplasts in photosynthesis energy is transferred to ATP in the light- dependent stage and the ATP is utilised during synthesis in the light-independent stage.

Read the information on these websites (you could make more Cornell notes if you wish):

http://www.bbc.co.uk/education/guides/zcxrd2p/revision

http://www.s-cool.co.uk/a-level/biology/respiration

And take a look at these videos:

https://www.youtube.com/watch?v=00jbG cfGuQ

https://www.youtube.com/watch?v=2f7YwCtHcgk

Task:

Produce an A3 annotated information poster that illustrates the process of cellular respiration and summarises the key points.

Your poster should include:

Both text and images

Be visually stimulating

Key words and definitions

Clearly labelled diagrams

Short explanations of key ideas or processes.

Scientific and Investigative Skills

As part of your A level you will complete a practical assessment. This will require you to carry out a series of practical activities as well as planning how to do them, analysing the results and evaluating the methods. This will require you to: use appropriate apparatus to record a range of quantitative measurements (to include mass, time, volume, temperature, length and pH), use appropriate instrumentation to record quantitative measurements, such as a colorimeter or photometer, use laboratory glassware apparatus for a variety of experimental techniques to include serial dilutions, use of light microscope at high power and low power, including use of a graticule, produce scientific drawing from observation with annotations, use qualitative reagents to identify biological molecules, separate biological compounds using thin layer/paper chromatography or electrophoresis, safely and ethically use organisms, use microbiological aseptic techniques, including the use of agar plates and broth, safely use instruments for dissection of an animal organ, or plant organ, use sampling techniques in fieldwork.

Task:

Produce a glossary for the following key words:

accuracy, anomaly, calibration, causal link, chance, confounding variable, control experiment, control group, control variable, correlation, dependent variable, errors, evidence, fair test, hypothesis, independent, null hypothesis, precision, probability, protocol, random distribution, random error, raw data, reliability, systematic error, true value, validity, zero error,

A Level Biology Transition Project:

Cystic Fibrosis – just one small change in a protein

In this project you are going to examine the disease Cystic Fibrosis in detail. This disease covers many aspects of the Biology syllabus at both GCSE and A level and it enables you to see how you can explore all aspects of a disease by drawing on knowledge across several Biology topics.

<u>Overview</u>

Cystic Fibrosis is a recessive genetic disease caused by a mutation in the CFTR gene found on Human chromosome 7. The mutation causes a faulty version of a chloride transporting protein to be produced in the cell membrane so that chloride ions can no longer be transported out of cells. This affects the water potential of mucus in all mucus-coated tubes of the body and results in very thick mucus being produced. The areas of the body most affected are the lungs, where the airways become full of thick sticky mucus, and the digestive system, where the pancreatic duct becomes blocked and nutrient absorption is affected. In order to have Cystic Fibrosis a person must inherit two copies of the mutated gene, one from each parent. New-born babies in the UK are tested for cystic fibrosis and genetic testing is available to relevant prospective parents. There is no cure available but there are treatments that can alleviate some of the symptoms of the disease and prolong cystic fibrosis patients' lives. Scientists hope to be able to develop more techniques such as gene therapy and gene editing to cure the disease.

Areas to include in your project:

Cell structure

- Human cells are eukaryotic.
- CFTR is a plasma-membrane protein that actively transports chloride ions out of a cell. (The fluid-mosaic model of cell membrane structure.)
- In cystic fibrosis, the structure of this protein is altered, so chloride ions are not transported out of the cell.
- Ribosomes and other cell organelles play a role in producing CFTR protein and mucus (which is a glycoprotein).

Cell transport

- Chloride ions are transported by active transport and changes in chloride ions affects the process of osmosis (by changing water potential)
- Mitochondria supply energy for active transport
- Faulty chloride ion transport affects the water potential of mucus in the respiratory tract and gut, resulting in thick sticky mucus.

Gene and protein synthesis

- The CFTR gene codes for a protein which is made by the ribosomes and placed into the cell membrane.
- A mutation in this gene leads to a non-functional protein which causes symptoms (phenotype)
- Cystic fibrosis is the most common genetic disease in European people and up to 1 in 25 carry the faulty recessive gene
- The chances of having a cystic fibrosis child depends on both parents being a carrier of the gene

Lungs

- The structure of the lungs means that gas exchange is impaired in people with cystic fibrosis.
- Efficient gas exchange requires a large surface area, a short diffusion pathway and a large concentration gradient, maintained by ventilation.
 - Thick mucus in cystic fibrosis blocks the airways, reducing the efficiency of gas exchange and means that people with CF are prone to lung infections.

Digestive System

 The thick mucus in the gut of a person with CF affects delivery of enzymes from the pancreas into the small intestine and affects the absorption of nutrients from the small intestine

Diagnosis and Treatment

- Babies in the UK are tested for CF and genetic testing is available when both parents are carriers
- Current treatments for the lung and gut problems can relieve symptoms and prolong a patient's life
- Future treatments hope to cure the disease using stem cells, gene therapy or gene editing techniques

Use these websites and others to get you started in your investigation:

https://www.nhs.uk/conditions/cystic-fibrosis/

https://www.cysticfibrosis.org.uk/what-is-cystic-fibrosis

https://www.webmd.com/children/what-is-cystic-fibrosis#1

https://www.blf.org.uk/support-for-you/cystic-fibrosis/what-is-it

https://www.genomicseducation.hee.nhs.uk/documents/cystic-fibrosis/

https://www.nhs.uk/news/genetics-and-stem-cells/gene-therapy-breakthrough-for-cystic-fibrosis/

https://www.cysticfibrosis.org.uk/genetherapy

Remember to reference your work

List the URL of any website you have used in completing your project, as well as, the date you went onto that website

List any text books, revision guides or class notes/power points you used

Use diagrams if you think it will help your explanation, but don't forget to say where they are from if they are not your own original work.

Science on Social Media

Science communication is essential in the modern world and all the big scientific companies, researchers and institutions have their own social media accounts. Here are some of our top tips to keep up to date with developing news or interesting stories:

Follow on Twitter:

Commander Chris Hadfield – former resident aboard the International Space Station @cmdrhadfield

Tiktaalik roseae – a 375 million year old fossil fish with its own Twitter account! @tiktaalikroseae

NASA's Voyager 2 – a satellite launched nearly 40 years ago that is now travelling beyond our Solar System

@NSFVoyager2

Neil dGrasse Tyson - Director of the Hayden Planetarium in New York @neiltyson

Sci Curious – feed from writer and Bethany Brookshire tweeting about good, bad and weird neuroscience

@scicurious

The SETI Institute – The Search for Extra Terrestrial Intelligence, be the first to know what they find! @setiinstitute

Carl Zimmer – Science writer Carl blogs about the life sciences @carlzimmer

Phil Plait – tweets about astronomy and bad science @badastronomer

Virginia Hughes - science journalist and blogger for National Geographic, keep up to date with neuroscience, genetics and behaviour @virginiahughes

Maryn McKenna – science journalist who writes about antibiotic resistance @marynmck

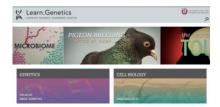
Find on Facebook:

Nature - the profile page for nature.com for news, features, research and events from Nature **Publishing Group**

Marin Conservation Institute – publishes the latest science to identify important marine ecosystems around the world.

National Geographic - since 1888, National Geographic has travelled the Earth, sharing its amazing stories in pictures and words.

Science News Magazine - Science covers important and emerging research in all fields of science.


BBC Science News - The latest BBC Science and Environment News: breaking news, analysis and debate on science and nature around the world.

Science websites

These websites all offer an amazing collection of resources that you should use again and again through out your course.

Probably the best website on Biology....

Learn Genetics from Utah University has so much that is pitched at an appropriate level for you and has lots of interactive resources to explore, everything from why some people can taste bitter berries to how we clone mice or make glow in the dark jelly fish.

http://learn.genetics.utah.edu/

LIVING CONSERVATION

In the summer you will most likely start to learn about Biodiversity and Evolution. Many Zoos have great websites, especially London Zoo. Read about some of the case studies on conservation, such as the Giant Pangolin, the only mammal with scales. https://www.zsl.org/conservation

At GCSE you learnt how genetic diseases are inherited. In this virtual fly lab you get to breed fruit flies to investigate how different features are passed on.

http://sciencecourseware.org/vcise/dro
sophila/

DNA from the beginning is full of interactive animations that tell the story of DNA from its discovery through to advanced year 13 concepts. One to book mark! http://www.dnaftb.org/

Ok, so not a website, but a video you definitely want to watch. One of the first topics you will learn about is the amazing structure of the cell. This BBC film shows the fascinating workings of a cell... a touch more detailed than the "fried egg" model you might have seen

http://www.dailymotion.com/video/xz h0kb_the-hidden-life-of-thecell_shortfilms

If this link expires – google "BBC hidden life of the cell"

Science: Things to do!

Day 4 of the holidays and boredom has set in?

There are loads of citizen science projects you can take part in either from the comfort of your bedroom, out and about, or when on holiday. Wikipedia does a comprehensive list of all the current projects taking place. Google 'citizen science project'

Want to stand above the rest when it comes to UCAS? Now is the time to

MOOCs are online courses run by nearly all Universities. They are short FREE courses that you take part in. They are usually quite specialist, but aimed at the public, not the genius!

There are lots of websites that help you find a course, such as edX and Future learn.

You can take part in any course, but there are usually start and finish dates. They mostly involve taking part in web chats, watching videos and interactives.

Completing a MOOC will look great your Personal on statement and they are dead easy to take part in!

A Level Biology Transition Baseline Assessment

The following 40 minute test is designed to test your recall, analysis and evaluative skills and knowledge. Remember to use your exam technique: look at the command words and the number of marks each question is worth. A suggested mark scheme is provided for you to check your answers.

1.	a) What are the four base pairs found in DNA?	
		(2)
	b) What does DNA code for?	
		(1)
	c) Which organelle in a cell carries out this function?	
		(1)
2. a	a) What theory did Charles Darwin propose?	
		(1)
b) Why did many people not believe Darwin at the time?	
_) Describe how fossils are formed.	(1)
C	, Describe now rossus are formed.	
		(3)
d	1) The fossil record shows us that there have been some species that have formed and some that have become extinct.	
	i) What is meant by the term 'species'?	
		(2)
	ii) Describe how a new species may arise:	
		(2)

3. Ecologists regularly study habitats to measure the species present and the effect of any changes. One team of ecologists investigated the habitat shown in the picture below:

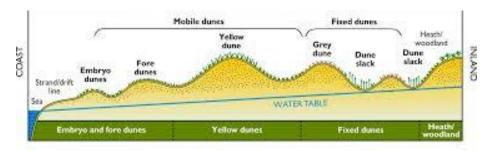


Image taken from http://www.macaulay.ac.uk/soilquality/Dune%20Succession.pdf

a) Define the following keywords:	
i) Population	
ii) Community	
.,	
	(2)
h) Cive an example of one highis factor and one abjects factor that would be present in this	hahitat
b) Give an example of one biotic factor and one abiotic factor that would be present in this	Παθιτατ
Biotic:	
Abiotic:	
a) Describe how the ecologists would go shout measuring the species present between the	(2)
 c) Describe how the ecologists would go about measuring the species present between the inland. 	coast and the
	(6)

4. Every living organism is made of cells.

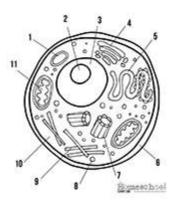


Image taken from http://prestigebux.com/worksheet/label-an-animal-cell-worksheet

a) Label the following parts of the animal cell:	
2	
5	
8	
8	(3)
b) Describe how is the structure of the cell membrane related to its function?	
	(3)

5. A medical research team investigated how quickly the body deals with glucose after a meal. They studied the blood glucose concentration of people who exercised versus those who did not. Here are their results:

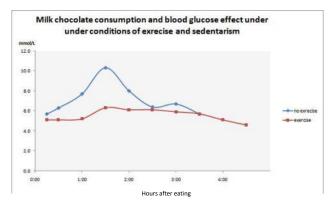


Image taken from https://memoirsofanamnesic.wordpress.com/category/blood-glucose/

/4)	
a) What organ in the body regulates blood glucose concentration?	

	(4)	
	(4)	
Name one variable the researchers will have	ve controlled.	
	(1)	
The researchers made the following conclu	usion:	
"Blood glucose returns what extent do you agree with this conclu	s to normal values for all people after 4 hours" usion.	
The chief as you ago so that the control		
	(3)	
Scientists need to be able to interpret data	a in granhs to decide it there are trends in the results	
For each graph bellow, describe the trend.		
For each graph bellow, describe the trend.	Baller	
rate of transpiration		
rate of transpiration	0 5 6 7 8 9	
rate of transpiration wind speed	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Images taken from: http://www.everythingmaths.co.za/science/lifesciences/grade-10/05-support-and-transport-systems-inplants/images/56aff2f9b6c5b041688f745ca928990c.png

Suggested Mark Scheme:

Question			Answer	Marks
1 a			Adenine-Thymine Cytosine-Guanine	1 1
	b		Protein/enzymes	1
	С		Ribosomes	1
2	а		Evolution (by natural selection)	1
	b		Not enough evidence	1
	С		(Plant/animal dies) and is quickly buried in sediment Not all conditions for decay are present Hard parts of the body are replaced by minerals	1 1 1
	d	i	Organisms that can reproduce to produce viable offspring/offspring that can also reproduce (fertile)	1
		ii	3 from Geographical isolation/named example Mutation of genes Natural Selection/selective advantage Species can no longer interbreed (not produce fertile offspring)	1 1 1 1
3	а	i	A group of organisms, all of the same species, and all of whom live together in a particular habitat.	1
		ii	The total of all populations living together in a particular habitat.	1
	b		Biotic – one from: Predators, prey, plant, microbes Abiotic – one from: Availability of water, temperature, mineral concentration, reference to climate/weather	1
	С		Measure out a transect Using a tape measure Use a quadrat At regular (named) intervals Identify species present Using a key/guide	1 1 1 1 1
4	Α		2 Nucleolus 5 Smooth Endoplasmic Reticulum 8 Golgi body	1 1 1

Question		Answer	Marks
4	b	Any 3 from the following structure and function must be given Lipid bilayer - has a hydrophobic inside and hydrophilic outsid allowing for selective permeability Proteins - allow for specific substances to come or some mole pass through, Cholesterol - allows for fluidity of the membrane, Glycoproteins - for cell identification they serve as markers	e, 1
5	а	Pancreas Pancreas	1
	b	3 from Pancreas detects change Insulin secreted By alpha cells Respiration increased Uptake of glucose increased Liver increases storage of glucose as glycogen	1 1 1 1 1
	С	Any one from: Amount of chocolate, time taken to eat, other food/drink con age, gender, weight, fitness level/metabolic rate, health/pre conditions, use of medicines/drugs	• • • • • • • • • • • • • • • • • • •
	d	Any three from Data suggests that blood glucose returns to normal Doesn't show how much exercise has been done Doesn't say age/gender/other named variable May only be true for chocolate/only one type of food investig	1 1 1 ated 1
6		Top left: transpiration increases when wind speed increases/t positive correlation Top right: rate increases with pH until the optimum is reached the optimum, rate decreases Bottom left: Increasing light initially increases the rate of photosynthesis, but after a while remains constant Bottom right: Population increases slowly at first and then inc a greater rate/increases exponentially	d, after 1