	Design and Technology Kate Wallac				
	Subject Area : D&T - Product Design				
Year Group : 11	Unit of Work :NEA				
Half Term : 1	Skills :				
	Intro communication of ideas - Use of annotated drawings that explain detailed development or the conceptual stages of designing and help to develop, communicate, record and justify design ideas				
	Continue annotation - Use of annotated drawings that explain detailed development or the conceptual stages of designing and help to develop, communicate, record and justify design ideas				
	Hand in ideas - Intro analysis of Ideas to help them explore and develop their own ideas				
	Development - Students are to design and develop prototypes in response to client wants and needs. • satisfy the requirements of the brief • respond to client wants and needs • demonstrate innovation • are functional • consider aesthetics • are potentially marketable.				
	Students should know and understand how to evaluate prototypes and be able to: • reflect critically, responding to feedback when evaluating their own prototypes				
	 suggest modifications to improve them through inception and manufacture assess if prototypes are fit for purpose. 				
Reasons behind ord	ler of topic in this half term				

	Design and Technology Kate Wall	<u>ace</u>
Voor Croup : 11	Subject Area : D&T - Product Design Unit of Work : NEA	
Year Group : 11 Half Term : 2	Skills :	
	Development - Students are to design and develop prototypes in respons to client wants and needs. • satisfy the requirements of the brief • respond to client wants and needs • demonstrate innovation	e
	 are functional consider aesthetics are potentially marketable. 	
	Students should know and understand how to evaluate prototypes and b able to:	e
	 reflect critically, responding to feedback when evaluating their own prototypes suggest modifications to improve them through inception and 	
	 assess if prototypes are fit for purpose. 	
	Development - continued - demonstrate use of CAD/CAM to create initia models	۱
	Development and modelling, use of CAD as communication tool	
	Development - developed models as a result of previous anthropometric research	
	Consideration of appropriate materials and components to make a prototype. How to select and use materials and components appropriate to the task considering: • functional need • cost • availability.	
	Demonstrate techniques to pupils to show them how to prepare samples which can be annotated ready for use in the development section of the NEA	
	 Papers and boards (how to cut, crease, score, fold and perforate card) Timber based materials (how to cut, drill, chisel, sand and plane). Metal based materials (how to cut, drill, turn, mill, cast, bronze and weld) Polymers (how to cut, drill, cast, deform, print and weld). Textile based materials (how to sew, pleat, gather, quilt and pipe). Direct pupils how to select and use specialist tools and equipment, including hand tools, machinery, digital design & manufacture, appropriate for the material and/or task to complete quality outcomes. How to use them safely to protect themselves and others from harm. How to select and use specialist techniques and processes appropriate for the 	d). ∨
	material and/or task and use them to the required level of accuracy in order to complete quality outcomes. How to use them safely to shape, fabricate and construct a high quality prototype, including techniques such as wastage, addition, deforming an reforming.	

	Development - consideration of materials, and suitability	
	Development - consideration of joining methods, manufacturing processes	
	Final Design - Demonstrate 3rd angle orthographic and exploded drawings - pupils to use Exploded diagrams to show constructional detail or assembly	
	Working Drawings 3rd angle orthographic, using conventions, dimensions and drawn to scale	
	Completion of working drawings	
Reasons behind ord	Reasons behind order of topic in this half term	
•		

	Subject Area : D&T - Product Design		
Year Group : 11	Unit of Work : NEA		
Half Term : 3	Skills :		
	Manufacturing Specification		
	Manufacture of product - scaled to ensure feasibility in time allocated. Pupils must photograph each stage of the manufacture to create a Diary of Manufacture as homework		
	Manufacture of product - scaled to ensure feasibility in time allocated.		
Reasons behind ord	Reasons behind order of topic in this half term		
•			

	Subject Area : D&T - Product Design
Year Group : 11	Unit of Work : NEA
Half Term : 4	Skills :
	Pupils must photograph each stage of the manufacture to create a Diary of Manufacture as homework
	Evaluation of product against Design Brief and Spec
	Testing with client, considerations of modifications both proposed and undertaken
	REVISION FOR EXAMINATION
Reasons behind ord	ler of topic in this half term
•	

	Design and Technology Kate Wa Subject Area : D&T - Product Design	allace
Year Group : 11	Unit of Work : REVISION FOR EXAMINATION	
Half Term : 5	Skills :	
	1.1 New and emerging technologies	
	 INDUSTRY The impact of new and emerging technologies on: the design and organisation of the workplace including automati and the use of robotics buildings and the place of work tools and equipment. 	ion
	 ENTERPRISE Enterprise based on the development of an effective business innovation: crowd funding virtual marketing and retail co-operatives fair trade. 	
	 SUSTAINABILITY The impact of resource consumption on the planet Finite non-finite disposal of waste. 	
	 PEOPLE How technology push/market pull affects choice. Changing job roles due to the emergence of new ways of workin driven by technological change 	ıg
	CULTURE • Changes in fashion and trends in relation to new and emergent technologies. Respecting people of different faiths and beliefs	
	 SOCIETY How products are designed and made to avoid having a negative impact on others: design for disabled elderly different religious groups 	ve
	 ENVIRONMENT Positive and negative impacts new products have on the environment: continuous improvement efficient working pollution global warming 	
	 PRODUCTION TECHNIQUES AND SYSTEMS The contemporary and potential future use of: automation computer aided design (CAD) 	

Design and Technology	Kate Wallace
 computer aided manufacture (CAM) flexible manufacturing systems (FMS) just in time (JIT) 	
lean manufacturing	
HOW THE CRITICAL EVALUATION OF NEW AND EMERGING TECHN INFORMS DESIGN DECISIONS?	IOLOGIES
• That it is important to consider scenarios from different pe and considering:	rspectives
 planned obsolescence design for maintenance ethics 	
the environment	
Skills : • 1.2 Energy generation and storage	
FOSSIL FUELS How power is generated from: • coal • gas	
 oil. Arguments for and against the selection of fossil fuels 	
NUCLEAR POWER How nuclear power is generated. Arguments for and against the of nuclear power	e selection
RENEWABLE ENERGY How power is generated from: • wind • solar • tidal • hydro-electrical • biomass.	
 ENERGY STORAGE SYSTEMS INCLUDING BATTERIES Kinetic pumped storage systems Alkaline and re-chargeable batteries. 	
1.3 Developments in new materials	
MODERN MATERIALS Developments made through the invention of new or improved eg Graphene, Metal foams and Titanium. Alterations to perform a particular function eg Coated metals, Li Crystal Displays (LCDs) and Nanomaterials.	
SMART MATERIALS That materials can have one or more properties that can be sign changed in a controlled fashion by external stimuli, such as stres temperature, moisture, or PH eg shape memory alloys, thermoch pigments and photochromic pigments	S,

COMPOSITE MATERIALS That composite materials are produced by combining two or mo different materials to create an enhanced material e.g. glass rei plastic (GRP) and carbon fibre reinforced plastic (CRP).	
TECHNICAL TEXTILES How fibres can be spun to make enhanced fabrics eg conducti fire resistant fabrics, kevlar and microfibres incorporating micro encapsulation.	ve fabrics,
Skills : • 1.4 Systems approach to designing	
INPUTS The use of light sensors, temperature sensors, pressure sensors ar switches.	nd
PROCESSES The use of programming microcontrollers as counters, timers and decision making, to provide functionality to products and proce	
OUTPUTS The use of buzzers, speakers and lamps, to provide functionality products and processes.	to
1.5 Mechanical devices	
DIFFERENT TYPES OF MOVEMENT The functions of mechanical devices to produce linear, rotary, reciprocating and oscillating movements.	
CHANGING MAGNITUDE AND DIRECTION OF FORCE Levers: • first order • second order • third order	
Linkages: • bell cranks • push/pull	
Rotary systems: • CAMs and followers • simple gear trains • pulleys and belts	
 Skills : 1.6 Materials and their working properties 	
PAPERS AND BOARDS Papers including: • bleed proof • cartridge paper • grid • layout paper	

 fracing paper Boards including: corrugated card duplex board foil lined board foam core board ink jet card solid white board NATURAL AND MANUFACTURED TIMBERS Hardwoods including: ash beech mahogany oak balsa Softwoods including: larch pine spruce Manufactured boards including: arch pine spruce Manufactured boards including: larch pine spruce Manufactured boards including: larch pine spruce Manufactured boards including: larch pine spruce Manufactured boards including: larch pine spruce Manufactured boards including: larch pipwood chipboard METALS AND ALLOYS Ferrous metals including: low carbon steel cast Iron high carbon/tool steel Non ferrous metals including: aluminium copper tin zinc Alloys including: brass stainless steel high speed steel POLYMERS Thermoforming including: acrylic (PMMA) high impact polystyrene (HIPS) high density polythene (HDPE) polypropylene (PP) polypropylene (PP) polypropylene (PP) polypropylene terephthalate (PET) 	Design and Technology
 corrugated card duplex board foil lined board foam core board ink jet card solid white board NATURAL AND MANUFACTURED TIMBERS Hardwoods including: ash beech mahogany oak balsa Softwoods including: larch pine spruce Manufactured boards including: medium density fibreboard (MDF) plywood chipboard METALS AND ALLOYS Ferrous metals including: low carbon steel cast Iron high carbon/tool steel Non ferrous metals including: aluminium copper tin zinc Alloys including: brass stainless steel high speed steel POLYMERS Thermoforming including: acrylic (PMMA) high impact polystyrene (HIPS) high density polythene (HDPE) polypropylene (PP) polyvinyl chloride (PVC) 	tracing paper
Hardwoods including: • ash • beech • mahogany • oak • balsa Softwoods including: • larch • pine • spruce Manufactured boards including: • medium density fibreboard (MDF) • plywood • chipboard METALS AND ALLOYS Ferrous metals including: • low carbon steel • cast Iron • high carbon/tool steel Non ferrous metals including: • aluminium • copper • tin • zinc Alloys including: • brass • stainless steel • high speed steel POLYMERS Thermoforming including: • acrylic (PMMA) • high impact polystyrene (HIPS) • high density polythene (HDPE) • polypropylene (PP) • polyvinyl chloride (PVC)	 corrugated card duplex board foil lined board foam core board ink jet card
 Iarch pine spruce Manufactured boards including: medium density fibreboard (MDF) plywood chipboard METALS AND ALLOYS Ferrous metals including: low carbon steel cast Iron high carbon/tool steel Non ferrous metals including: aluminium copper tin zinc Alloys including: brass stainless steel high speed steel POLYMERS Thermoforming including: acrylic (PMMA) high density polythene (HIPS) high density polythene (HDPE) polypropylene (PP) polypropylene (PVC) 	Hardwoods including: • ash • beech • mahogany • oak
 medium density fibreboard (MDF) plywood chipboard METALS AND ALLOYS Ferrous metals including: low carbon steel cast Iron high carbon/tool steel Non ferrous metals including: aluminium copper tin zinc Alloys including: brass stainless steel high speed steel POLYMERS Thermoforming including: acrylic (PMMA) high impact polystyrene (HIPS) high density polythene (HDPE) polypropylene (PP) polyvinyl chloride (PVC) 	 larch pine
Ferrous metals including: low carbon steel cast Iron high carbon/tool steel Non ferrous metals including: aluminium copper tin zinc Alloys including: brass stainless steel high speed steel POLYMERS Thermoforming including: acrylic (PMMA) high impact polystyrene (HIPS) high density polythene (HDPE) polypropylene (PP) polypropylene (PVC) 	 medium density fibreboard (MDF) plywood
 aluminium copper tin zinc Alloys including: brass stainless steel high speed steel POLYMERS Thermoforming including: acrylic (PMMA) high impact polystyrene (HIPS) high density polythene (HDPE) polypropylene (PP) polyvinyl chloride (PVC) 	Ferrous metals including: • low carbon steel • cast Iron
 brass stainless steel high speed steel POLYMERS Thermoforming including: acrylic (PMMA) high impact polystyrene (HIPS) high density polythene (HDPE) polypropylene (PP) polyvinyl chloride (PVC) 	 aluminium copper tin
Thermoforming including: • acrylic (PMMA) • high impact polystyrene (HIPS) • high density polythene (HDPE) • polypropylene (PP) • polyvinyl chloride (PVC)	brassstainless steel
	Thermoforming including: • acrylic (PMMA) • high impact polystyrene (HIPS) • high density polythene (HDPE) • polypropylene (PP) • polyvinyl chloride (PVC)

Thermosetting including:

- epoxy resin (ER)
- melamine-formaldehyde (MF)
- phenol formaldehyde (PF)
- polyester resin (PR)
- urea-formaldehyde (UF

TEXTILES

Natural fibres including:

- cotton
- wool
- silk

Synthetic fibres including:

- polyester
- polyamide (nylon)
- elastane (lycra)

Blended and mixed fibres including:

• cotton/polyester

woven including:

• plain weave

Non-woven including:

- bonded fabrics
- felted fabrics

Knitted textiles including:

knitted fabrics

MATERIAL PROPERTIES

In relation to the main categories outlined above (not the specific materials identified), students should know and understand physical properties such as:

- absorbency (resistance to moisture)
- density
- fusibility
- electrical and thermal conductivity.

In relation to the main categories outlined above (not the specific materials identified), students should know and understand working properties such as:

- strength
- hardness
- toughness
- malleability
- ductility and elasticity.

Skills: 2 Specialist technical principles

In addition to the core technical principles, all students should develop an in-depth knowledge and understanding of the following specialist technical principles:

• selection of materials or components

- forces and stresses
- ecological and social footprint
- sources and origins
- using and working with materials
- stock forms, types and sizes
- scales of production
- specialist techniques and processes
- surface treatments and finishes

2.1 Selection of materials or components

In relation to at least one material category or system, students should be able to select materials and components considering the factors listed below

- Functionality: application of use, ease of working.
- Aesthetics: surface finish, texture and colour.
- Environmental factors: recyclable or reused materials.
- Availability: ease of sourcing and purchase.
- Cost: bulk buying.
- Social factors: social responsibility.
- Cultural factors: sensitive to cultural influences.
- Ethical factors: purchased from ethical sources such as FSC

2.2 Forces and stresses

Materials and objects can be manipulated to resist and work with forces and stresses

Tension, compression, bending, torsion and shear.

Materials can be enhanced to resist and work with forces and stresses to improve functionality

How materials can be reinforced, stiffened or made more flexible: eg lamination, bending, folding, webbing, fabric interfacing.

2.3 Ecological and social footprint

Ecological issues in the design and manufacture of products Deforestation, mining, drilling and farming.

Mileage of product from raw material source, manufacture, distribution, user location and final disposal.

That carbon is produced during the manufacture of products.

The six Rs Reduce Refuse Re-use Repair Recycle Rethink. Social issues in the design and manufacture of products Safe working conditions; reducing oceanic/ atmospheric pollution and reducing the detrimental (negative) impact on others.

Primary sources of materials and the main processes involved in converting into workable forms for at least one material area.

Design and Technology Kate Wallace
 Paper and board (how cellulose fibres are derived from wood and grasses and converted into paper). Timber based materials (Seasoning, conversion and creation of manufactured timbers). Metal based materials (extraction and refining). Polymers (refining crude oil, fractional distillation and cracking). Textile based materials (obtaining raw material from animal, chemical and vegetable sources, processing and spinning).
2.5 Using and working with materials Properties of materials
Students must know and understand how different properties of materials and components are used in commercial products, how properties influence use and how properties affect performance.
Students must know and understand the physical and mechanical properties relevant to commercial products in their chosen area as follows:
• Papers and boards (flyers/leaflets and card based food packaging).
• Timber based materials (traditional timber children's toys and flat pack furniture).
 Metal based materials (cooking utensils and hand tools).
• Polymers (polymer seating and electrical fittings).
• Textile based materials (sportswear and furnishings).
• Electronic and mechanical systems (motor vehicles and domestic appliances).
 The modification of properties for specific purposes Additives to prevent moisture transfer (paper and boards). Seasoning to reduce moisture content of timbers (timber based materials). Annealing to soften material to improve malleability (metal based materials). Stabilisers to resist UV degradation (polymers). Flame retardants reduce combustion and fire hazards (textile based materials). Photosensitive PCB board in PCB manufacture and anodizing aluminium to improve surface hardness (electronic and mechanical systems).
How to shape and form using cutting, abrasion and addition
• Papers and boards (how to cut, crease, score, fold and perforate card).
• Timber based materials (how to cut, drill, chisel, sand and plane).
• Metal based materials (how to cut, drill, turn, mill, cast, bronze and weld).

Design and Technology	Kate Wallace
• Polymers (how to cut, drill, cast, deform, print and weld).	
• Textile based materials (how to sew, pleat, gather, quilt and pip	e).
• Electronic and mechanical systems (how to cut, drill and solder)	
Skills :	
2.6 Stock forms, types and sizes	
Commercially available types and sizes of materials and compon Papers and boards: • sheet, roll and ply • sold by size eg A3, thickness, weight and colour • standard components eg fasteners, seals and bindings • cartridge paper and corrugated card.	ents.
 Timber based materials: planks, boards and standard moldings sold by length, width, thickness and diameter standard components eg woodscrews, hinges, KD fittings. 	
Metal based materials: • sheet, rod, bar and tube • sold by length, width, thickness and diameter • standard components eg rivets, machine screws, nuts, and bolt	s.
Polymers: • sheet, rod, powder, granules, foam and films • sold by length, width, gauge and diameter • standard components eg screws, nuts and bolts, hinges.	
 Textile based materials: yarns and fabrics sold by roll size, width, weight and ply standard components eg zips, press studs, velcro. 	
Electrical and mechanical components: • sold by quantity, volt and current rating • standard components eg E12 resistor series, dual in line IC packer (DIL), microcontrollers (PIC).	ages
2.7 Scales of production How products are produced in different volumes. The reasons why different manufacturing methods are used for di- production volumes:	fferent
 prototype batch mass continuous. 	
 2.8 Specialist techniques and processes The use of production aids	

How to use measurement/reference points,	
templates, jigs and patterns where suitable.	
Tools, equipment and processes A range of tools, equipment and processes that can be used to fabricate, construct and assemble high quality prototypes, as appropriate to the materials and/or components being used including: wastage, such as:	shape,
 die cutting perforation turning sawing milling drilling cutting and shearing addition, such as: brazing welding lamination soldering 3D printing bottik sewing bonding printing deforming and reforming such as: vacuum forming creasing pressing drape forming bending blow moulding casting injection moulding 	
 extrusion. How materials are cut shaped and formed to a tolerance The manufacture to minimum and maximum measurements. Extracting information on tolerances and using it to control qualit make a prototype. Commercial processes Papers and boards (offset lithography and die cutting). Timber based materials (routing and turning). Metal based materials (milling and casting). Polymers (injection molding and extrusion). Textile based materials (weaving, dying and printing). Electrical and mechanical systems (pick and place assembly of soldering). 	and flow

The application and use of Quality Control to include measurable and quantitative systems used during manufacture

Design and Technology	Kate Wallace
 Papers and boards (registration marks). 	
 Timber based materials (dimensional accuracy 	
using go/no go fixture).	
 Metal based materials (dimensional accuracy using a dep 	
Polymers (dimensional accuracy by selecting correct laser	• •
 Textile based materials (dimensional accuracy checking c print against an original sample). 	i repeating
 Electrical and mechanical systems (UV exposure, develop 	ina and
etching times in PCB manufacture).	
2.9 Surface treatments and finishes	
The preparation and application of treatments and finishes to functional and aesthetic properties.	to enhance
 Papers and boards (printing, embossing and UV varnishing) 	1)
 Timber based materials (painting, varnishing and tanalising 	
Metal based materials (dip coating, powder coating and	
 Polymers (polishing, printing and vinyl decals). 	0
Textile based materials (printing, dyes and stain protection	.).
Electronic and mechanical systems (PCB lacquering, and	lubrication).
Surface treatments to inhibit corrosion and oxidation.	
Reasons behind order of topic in this half term	
•	

Subject Area : D&T - Product Design	
Year Group : 11	Unit of Work : REVISION FOR EXAMINATION
Half Term : 6	Skills : PAST PAPERS and MARK SCHEMES
	EXAMINATION
Reasons behind order of topic in this half term	
•	