Higher GCSE 9-1 Algebra content checklist	
Algebra – manipulation equations & inequalities	Graphs
 Expanding products of two or more binomials: Expand 2 brackets (2x + 1)(2x - 3) 3 brackets (2x + 1)(2x - 3)(3x + 2) 	 Plot straight line graphs using table of values or step method Use y = mx + c to identify parallel and perpendicular lines(gradient = -1/m) Find the equation of the line through two given points or through one point with a given gradient y -y₁ =m(x-x₁) Find the midpoint of a line (x₁+x₂,y₁ + y₂)/2
 Factorising quadratic expressions : x² + 8x + 15 and 5x² - 14x - 3 Including the difference of two squares: x² - 9 	 Identify and interpret gradients and intercepts of linear functions graphically and algebraically
 Rearrange formulae to change the subject: Make <i>x</i> the subject y= mx + c or y = ^{3x+4}/_{x-3} (will involve factorising) 	 Identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square
 Algebraic proofs: Represent even as 2n, odd as 2n + 1 Consecutive numbers represent as n, n + 1 Multiples look for factor eg 4(2n+3) factor of 4 	 Recognise, sketch and interpret linear, quadratic, cubic and reciprocal graphs /exponential functions y = kx for positive values of k, Trigonometric graphs y = sin x, y = cos x and y = tan x
 Functions: Composite f(x) = 2x - 3 g(x) = x² + 2 find g(-4) Show that gf(x) = 4x² - 12x + 11 Solve fg(x) = gf(x) Inverse: Find f⁻¹ 	Sketch translations and reflections of a given function
 Solve linear equations & terms on both sides Able to form and solve an equation from a simple situation Harder type: Solve 2/(y+1) + 3/(2y-3) = 1 or (x+1)/2 + (x-3)/4 = 2 (Cross multiply) 	 Plot and interpret graphs (including reciprocal graphs and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration
 Solve quadratics by Factorisation: x² + 8x + 15 = 0 and 5x² - 14x - 3 = 0, Completing the square: Find the values of a and b such that x² + 10x + 40 = (x + a)² + b and solve giving answer in surd form Using the formula: Solve 2x² - 4x - 3 = 0 (answer to 2dp) By finding approximate solutions from graph 	 Calculate gradient: gradients of linear graphs = height / base (draw a rt-angled triangle) or use step method or formula y₂ - y₁/ x₂ - x₁ Areas under graphs: (including quadratic and other non-linear graphs) Split into triangles / trapezia to find the area and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts

 Linear: 2x + 3y = 9 and 3x + 2y = 1, Non-linear: x² + y² = 16 and y = 3x - 1 or y = x + 2 and y = 3x² Graphically (linear/linear, linear/quadratic, linear/circle) Worded simultaneous equations Iteration - find approximate solutions to equations Show that the equation x³ + 5x - 4 = 0 has a solution between x = 0 and x = 1 Show that the equation x³ + 5x - 4 = 0 can be arranged to give x = 4/(x² + 5) Starting with x₀ = 0, use the iteration formula x_{n+1} = 4/(x_n² + 5) twice, to find an estimate for the solution of x³ + 5x - 4 = 0 	$x^2 + y^2 = r^2$ $x^2 + y^2 = 9^2$ radius = 3 • Find the equation of a tangent to a circle at a given point: perpendicular gradient = -1/m
 Solve linear and quadratic inequalities Represent the solution set on a number line, using set notation and on a graph 	
 Recognise and use triangular, square and cube sequences, arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric sequences (exponential) using arⁿ⁻¹ 	
 Calculate the <i>n</i>th term of: A linear sequence: 2, 5, 7, 9 3n -1 Quadratic sequence 3, 8, 15, 24 n² + 2n + 1 	
• Simplify algebra $\frac{x^2 + 3x - 4}{2x^2 - 5x + 3}$ (factorise first) • Write $\frac{4}{x+2} + \frac{3}{x-2}$ as a single fraction in its simplest form (find a common denominator)	